Scientists alter fat metabolism in animals to prevent most common type of heart disease

April_Part 2_Lipidology_24Working with mice and rabbits, Johns Hopkins scientists have found a way to block abnormal cholesterol production, transport and breakdown, successfully preventing the development of atherosclerosis, the main cause of heart attacks and strokes and the number-one cause of death among humans. The condition develops when fat builds inside blood vessels over time and renders them stiff, narrowed and hardened, greatly reducing their ability to feed oxygen-rich blood to the heart muscle and the brain.

In a series of experiments, described April 7 in the journalCirculation, the Johns Hopkins team says it identified and halted the action of a single molecular culprit responsible for a range of biological glitches that affect the body’s ability to properly use, transport and purge itself of cholesterol – the fatty substance that accumulates inside vessels and fuelsheart disease.

The offender, the researchers say, is a fat-and-sugar molecule called glycosphingolipid, or GSL, which resides in the membranes of all cells, and is mostly known for regulating cell growth. Results of the experiments, the scientists say, reveal that this very same molecule also regulates the way the body handles cholesterol.

The Johns Hopkins team used an existing man-made compound called D-PDMP to block the synthesis of the GSL molecule, and by doing so, prevented the development of heart disease in mice and rabbits fed a high-fat, cholesterol-laden diet. The findings reveal that D-PDMP appears to work by interfering with a constellation of genetic pathways that regulate fat metabolism on multiple fronts – from the way cells derive and absorb cholesterol from food, to the way cholesterol is transported to tissues and organs and is then broken down by the liver and excreted from the body.

“Current cholesterol-lowering medications tackle the problem on a single front – either by blocking cholesterol synthesis or by preventing the body from absorbing too much of it,” says lead investigator Subroto Chatterjee, Ph.D., a cardio-metabolic expert at the Johns Hopkins Children’s Center. “But atherosclerosis is a multi-factorial problem that requires hitting the abnormal cholesterol cycle at many points. By inhibiting the synthesis of GSL, we believe we have achieved exactly that.”

Specifically, the experiments showed that treatment with D-PDMP led to:

  • a drop in the animals’ levels of so-called bad cholesterol or low-density lipoprotein, LDL;
  • a drop in oxidized LDL, a particularly virulent form of fat that forms when LDL encounters free radicals. Oxidized LDL easily sticks to the walls of blood vessels, where it ignites inflammation, damaging the vessel walls and promoting the growth of fatty plaque;
  • a surge in good cholesterol or high-density lipoprotein, HDL, known to counteract the effects of LDL by mopping it up; and
  • a significant drop in triglycerides, another type of plaque-building fat.

The treatment also prevented fatty plaque and calcium deposits from building up inside the animals’ vessels. These effects were observed in animals on a daily D-PDMP treatment even though they ate a diet made up of 20 percent triglycerides – the human equivalent of eating a greasy burger for breakfast, lunch and dinner. In addition, the researchers say, D-PDMP appears to precision-target the worst byproducts of aberrant cell growth signaling, such as oxidized LDL and the activity of certain chemicals that fuel vessel inflammation, without altering cell growth itself.

http://www.medicalnewstoday.com/releases/275836.php

Picture courtesy of www.nutrientrich.com

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s